Power metal film resistors

PR01/02/03

FEATURES

- High power in small package
- Different lead materials for different applications
- Defined interruption behaviour.

APPLICATIONS

All general purpose power applications.

DESCRIPTION

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper or electroclad iron are welded to the end-caps. The resistors are coated with a red, nonflammable

lacquer which provides electrical, mechanical, and climatic protection. This coating is not resistant to aggressive fluxes. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E" method 215, and "IEC 68-2-45".

QUICK REFERENCE DATA

	VALUE					
DESCRIPTION	DD04	PR0	2	PR03		
	PR01	Cu-lead	FeCu-lead	Cu-lead	FeCu-lead	
Resistance range	$0.22~\Omega$ to 1 M Ω	$0.33~\Omega$ to $1~\text{M}\Omega$	1 Ω to 1 MΩ	$0.68~\Omega$ to $1~\text{M}\Omega$	1 Ω to 1 MΩ	
Resistance tolerance and series		±5%	%; E24 series ⁽¹	i)		
Maximum dissipation at T _{amb} = 70 °C						
R < 1 Ω	0.6 W	1.2 W	_	1.6 W	_	
1 Ω ≤ R	1 W	2 W	1.3 W	3 W	2.5 W	
Thermal resistance (R _{th})	135 K/W	75 K/W	115 K/W	60 K/W	75 K/W	
Temperature coefficient		<u> </u>	$\pm 250 \times 10^{-6} / K$		•	
Maximum permissible voltage (DC or RMS)	350 V	500	V	750	V	
Basic specifications		IEC	115-1 and 115-	-4		
Approval			CECC 40101			
Climatic category (IEC 68)			55/155/56			
Stability after:						
load	Δ R/R max.: ±5% +0.1 Ω					
climatic tests		ΔR/R	max.: ±3% +0.	1 Ω		
soldering		ΔR/R ι	max.: ±1% +0.0)5 Ω		

Notes

1. Other tolerances and values on request

Power metal film resistors

PR01/02/03

ORDERING INFORMATION

Table 1 Ordering code indicating resistor type and packaging

	ORDERING CODE									
			BANDOLIER		LOOSE IN BOX					
TYPE	LEAD	AMMOPACK		REEL	CROPPED AND FORMED ⁽¹⁾		DOUBLE KINK			
		RADIAL TAPED	STRAIGHT LEADS	STRAIGHT LEADS	h ⁽²⁾ = 8 mm	h ⁽²⁾ = 15 mm	LARGE PITCH ⁽¹⁾	SMALL PITCH		
DD04	Cu ∅0.6 mm	2306 197 03	2322 193 13	2322 193 23	2322 193 33 ⁽³⁾	_	2322 193 03	_		
PR01	FeCu Ø0.6 mm	_	_	_	_	-	2322 193 43	2322 193 53		
	Cu Ø0.8 mm	2306 198 03	2322 194 13	_	2322 194 33	2322 194 43	_	_		
PR02	FeCu Ø0.6 mm	_	2322 194 53	_	2322 194 73 ⁽³⁾	-	2322 194 83			
	FeCu Ø0.8 mm	_	_	_	_	-	_	2322 194 63		
	Cu Ø0.8 mm	_	2322 195 13	_	2322 195 33	2322 195 43	_	_		
PR03	FeCu Ø0.6 mm	_	2322 195 53	_	2322 195 73 ⁽³⁾	-	2322 195 83	_		
	FeCu Ø0.8 mm	_	-	_	_	-	_	2322 195 63		

Notes

- 1. Maintenance type, not for new designs
- 2. h = mounted height above PCB (see Fig.41).
- 3. Type can be replaced by double kink, large pitch

Ordering code (12NC)

- The resistors have a 12-digit ordering code
- The first 9 digits indicate the resistor type and packaging; see Table 1
- The remaining 3 digits indicate the resistance value.
 - The first 2 digits indicate the resistance value
 - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12 NC

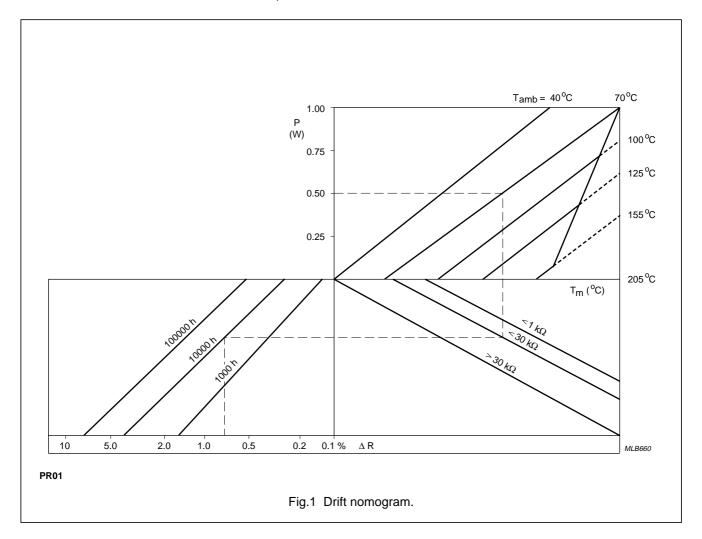
RESISTANCE DECADE	LAST DIGIT
0.1 to 0.91 Ω	note 1
1 to 9.1 Ω	8
10 to 91 Ω	9
100 to 910 Ω	1
1 to 9.1 kΩ	2
10 to 91 kΩ	3
100 to 910 kΩ	4
1 ΜΩ	5

Notes

1. 12NC available on request.

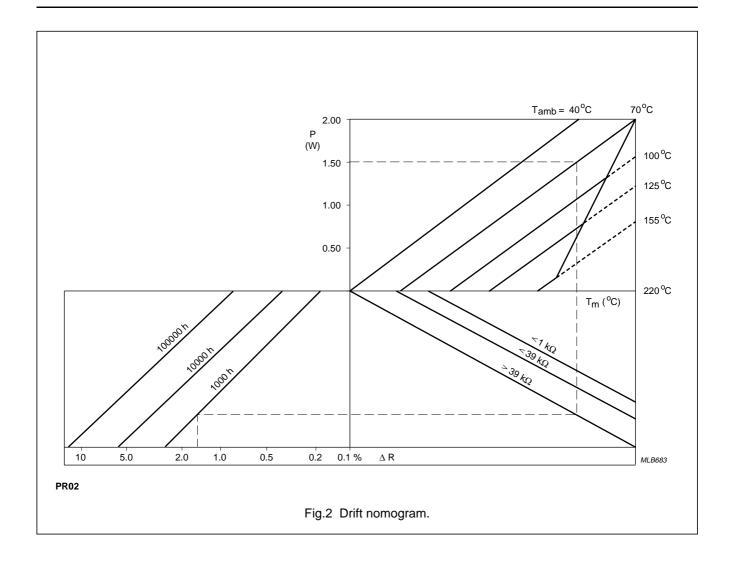
ORDERING EXAMPLE

The ordering code for resistor type PR02 with Cu leads and a value of 750 Ω , supplied on a bandolier of 1000 units in ammopack, is: 2322 194 13751.

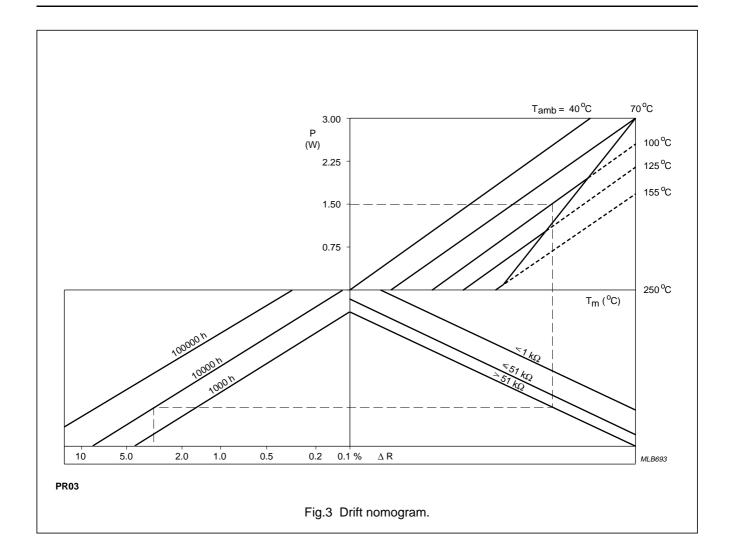

Power metal film resistors

PR01/02/03

FUNCTIONAL DESCRIPTION


Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5\%$. The values of the E24 series are in accordance with "IEC publication 63".


Power metal film resistors

PR01/02/03

Power metal film resistors

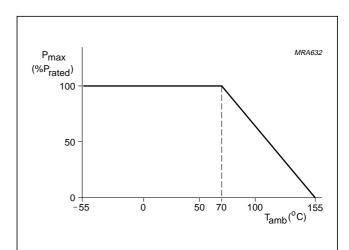
PR01/02/03

Power metal film resistors

PR01/02/03

Limiting values

TYPE	LEAD MATERIAL	RANGE	LIMITING VOLTAGE ⁽¹⁾ (V)	LIMITING POWER (W)
DD01	Cu	R < 1 Ω	350	0.6
PR01	Cu	1 Ω ≤ R	330	1.0
	Cu	R < 1 Ω		1.2
PR02	Cu	1 Ω ≤ R	500	2.0
	FeCu	1 Ω ≤ R		1.3
PR03	Cu	R < 1 Ω		1.6
	Cu	1 Ω ≤ R	750	3.0
	FeCu	1 Ω ≤ R		2.5

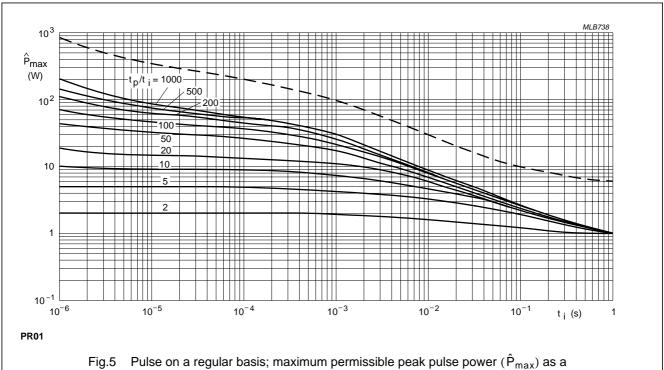

Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 115-1".

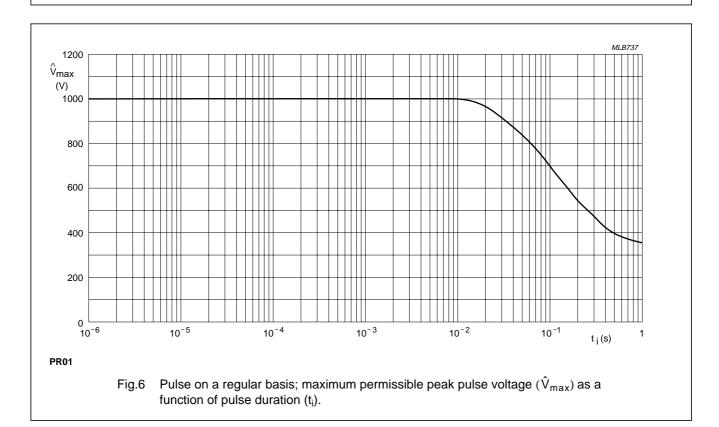
The maximum permissible hot spot temperature is 235 °C for PR01, 220 °C for PR02 and 250 °C for PR03.

DERATING

The power that the resistor can dissipate depends on the operating temperature; see Fig.4.

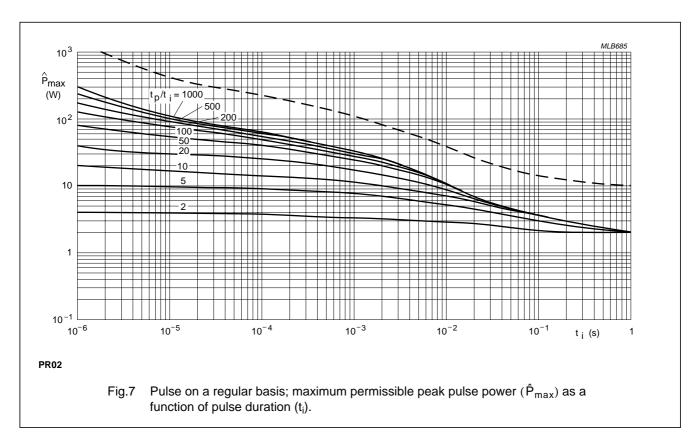


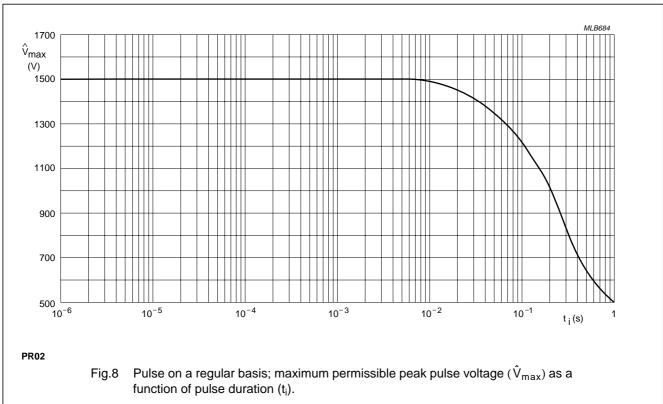
 $\label{eq:Fig.4} \begin{array}{ll} \text{Maximum dissipation } (P_{\text{max}}) \text{ in percentage of} \\ \text{rated power as a function of the ambient} \\ \text{temperature } (T_{\text{amb}}). \end{array}$


Power metal film resistors

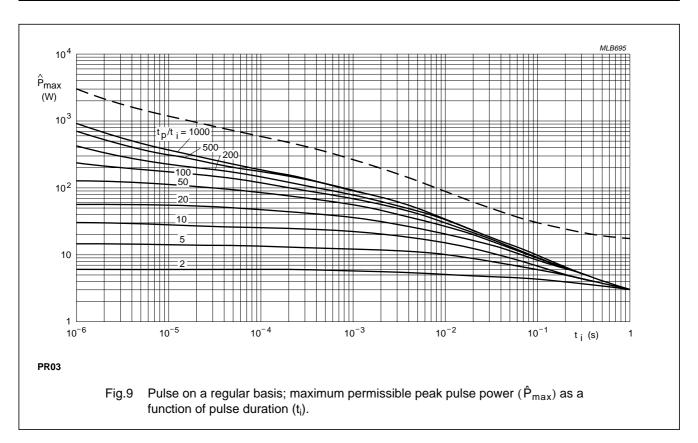
PR01/02/03

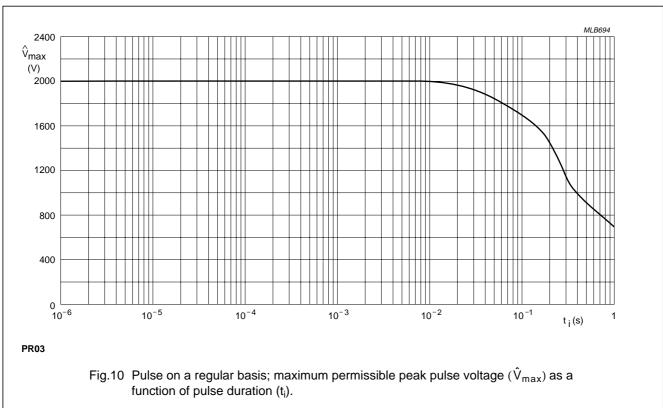
PULSE LOADING CAPABILITIES




function of pulse duration (t_i).

Power metal film resistors


PR01/02/03



Power metal film resistors

PR01/02/03

Power metal film resistors

PR01/02/03

INTERRUPTION CHARACTERISTICS

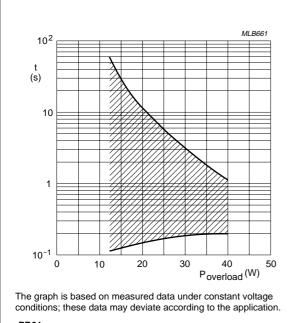
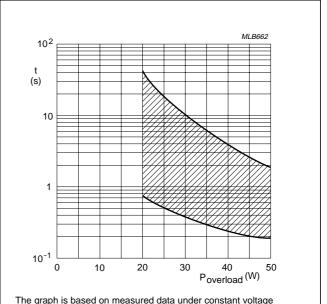
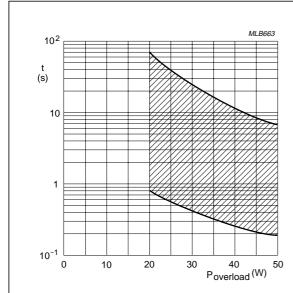
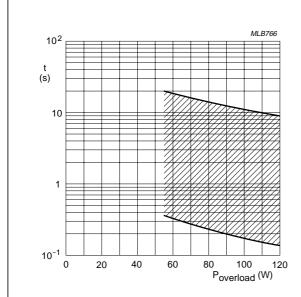




Fig.11 Time to interruption as a function of overload power for range: $0R22 \le R_n < 1R$.

The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

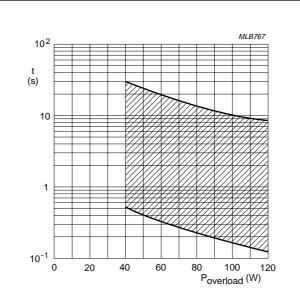
Fig.12 Time to interruption as a function of overload power for range: $1R \le R_n \le 15R$.



The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

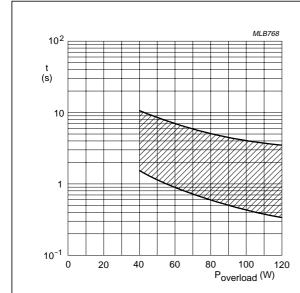
Fig.13 Time to interruption as a function of overload power for range: $16R \le R_n \le 560R$.

Power metal film resistors


PR01/02/03

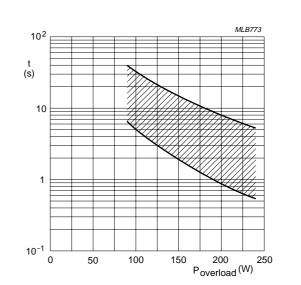
The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

PR02


Fig.14 Time to interruption as a function of overload power for range: $0.33R \le R_n < 5R$.

The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

PR02


Fig.15 Time to interruption as a function of overload power for range: $5R \le R_n < 68R$.

The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

PR02

Fig.16 Time to interruption as a function of overload power for range: $68R \le R_n \le 560R$.

The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

PR03

Fig.17 Time to interruption as a function of overload power for range: $0.68R \le R_n \le 560R$.

Power metal film resistors

PR01/02/03

Application information

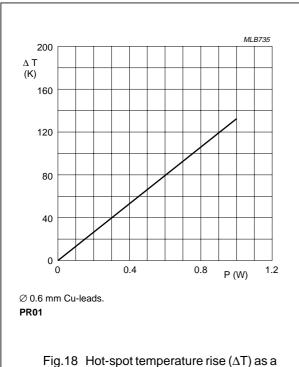


Fig.18 Hot-spot temperature rise (ΔT) as a function of dissipated power.

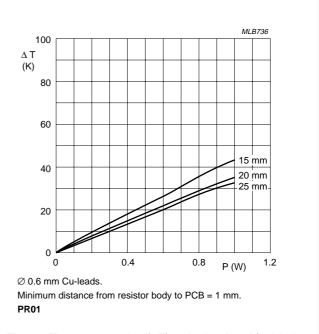
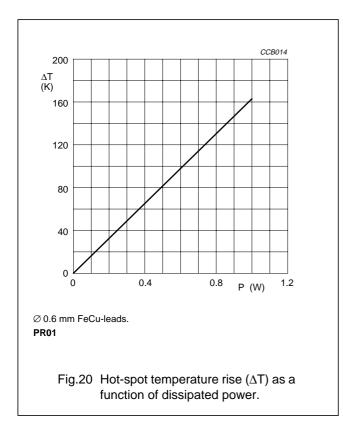
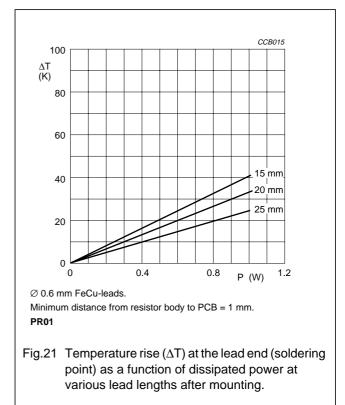




Fig.19 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

Power metal film resistors

PR01/02/03

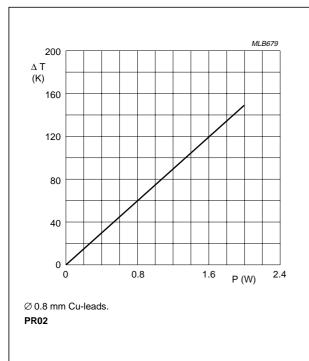


Fig.22 Hot-spot temperature rise (ΔT) as a function of dissipated power.

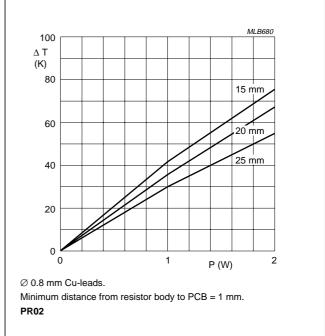


Fig.23 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

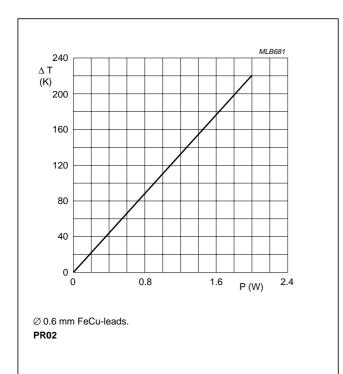


Fig.24 Hot-spot temperature rise (ΔT) as a function of dissipated power.

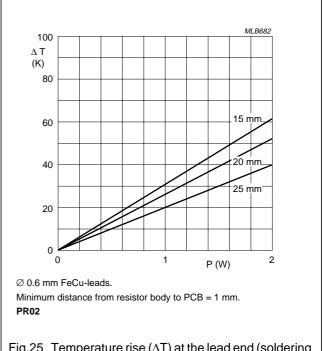
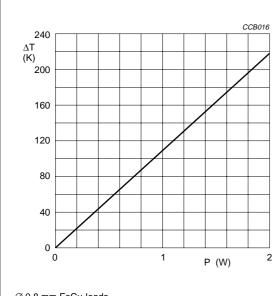



Fig.25 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

Power metal film resistors

PR01/02/03

 \varnothing 0.8 mm FeCu-leads.

PR02

Fig.26 Hot-spot temperature rise (ΔT) as a function of dissipated power.

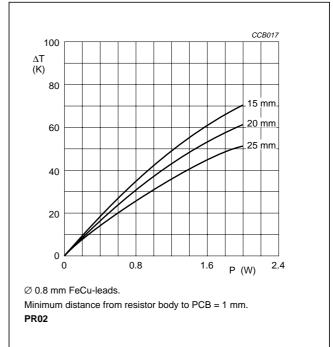
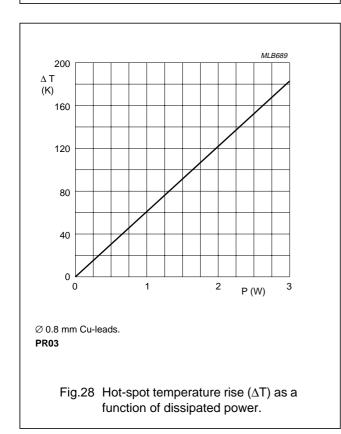
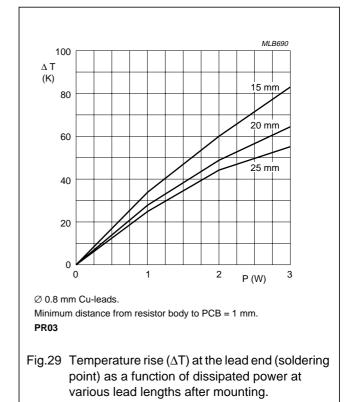




Fig.27 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

Power metal film resistors

PR01/02/03

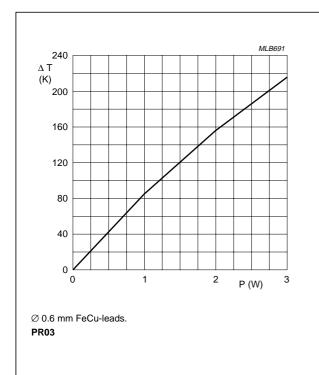


Fig.30 Hot-spot temperature rise (ΔT) as a function of dissipated power.

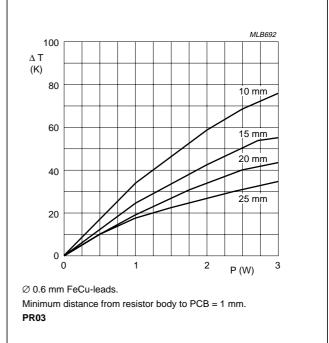
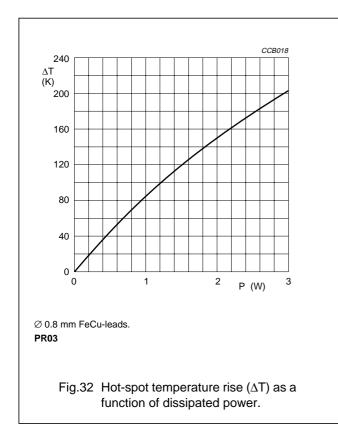
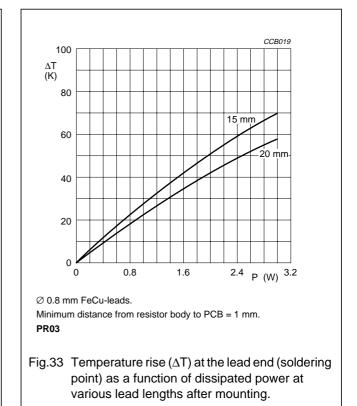
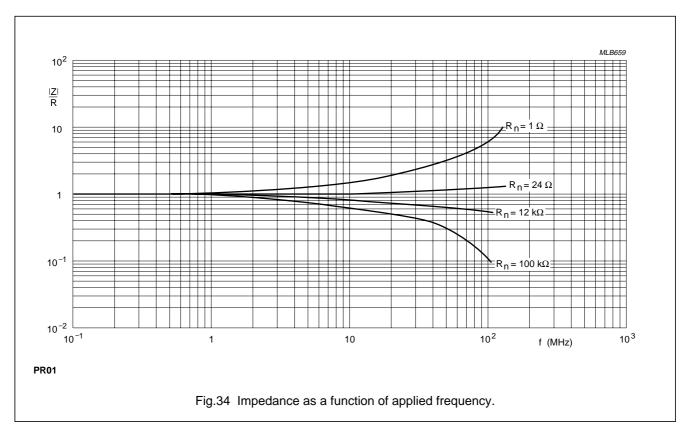
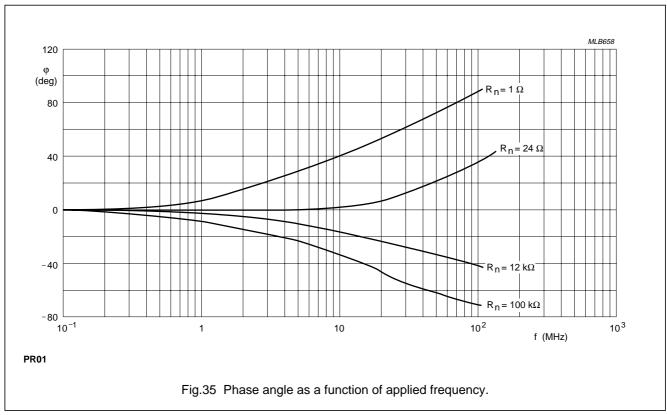




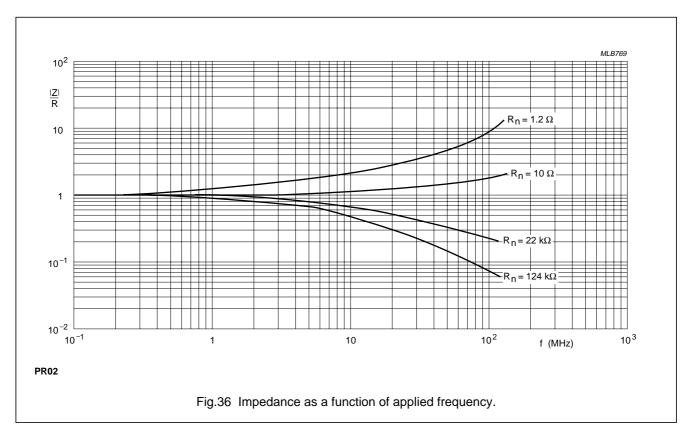
Fig.31 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

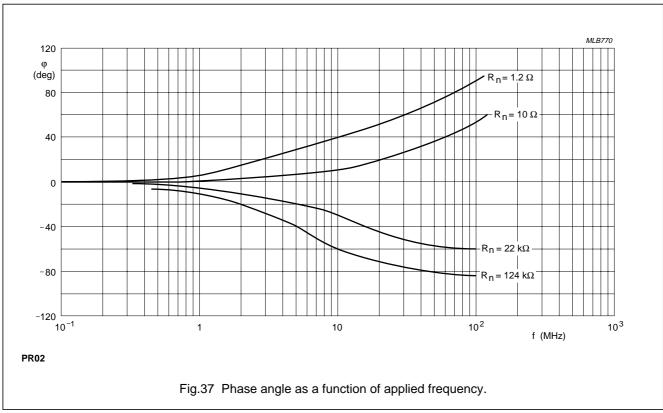



1997 Nov 26

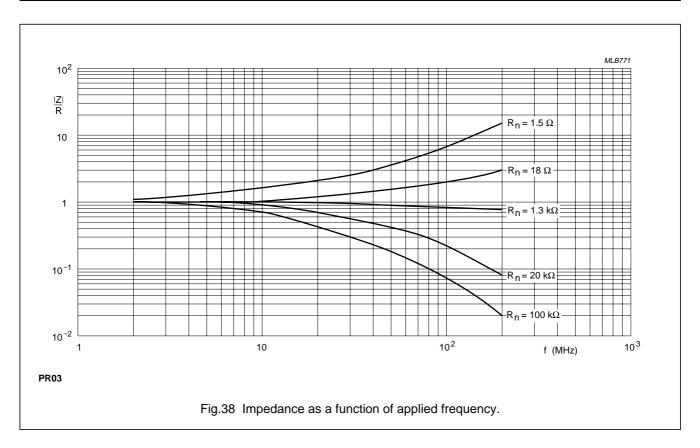
15

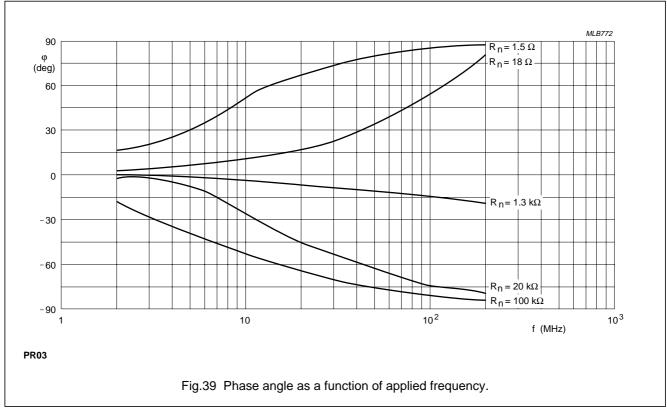
Power metal film resistors


PR01/02/03



Power metal film resistors


PR01/02/03



Power metal film resistors

PR01/02/03

Power metal film resistors

PR01/02/03

MECHANICAL DATA

Mass per 100 units

TYPE	LEAD MATERIAL	MASS (g)
PR01	Cu	29
	FeCu	29
PR02	Cu	63
	FeCu	45
PR03	Cu	110
	FeCu	100

Mounting

The resistors are suitable for processing on automatic insertion equipment and cutting and bending machines.

Marking

The nominal resistance and tolerance are marked on the resistor using four coloured bands in accordance with IEC publication 62, "Colour codes for fixed resistors".

Outlines

The length of the body (L_1) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 294"). Resistors with lead lengths of 73, 52 or 26 mm are available on request.

Mounting pitch

TYPE	LEAD STYLE	PITCH			
ITPE	LEADSITLE	(mm)			
PR01	straight leads	12.5 ⁽¹⁾	5 ⁽¹⁾		
	radial taped	4.8	2		
	cropped & formed	17.8	7		
	double kink large pitch	17.8	7		
	double kink small pitch	12.5	5		
PR02	straight leads	15.0 ⁽¹⁾	6 ⁽¹⁾		
	radial taped	4.8	2		
	cropped & formed	17.8	7		
	double kink large pitch	17.8	7		
	double kink small pitch	15.0	6		
PR03	straight leads	23.0 ⁽¹⁾	9 ⁽¹⁾		
	cropped & formed	25.4	10		
	double kink large pitch	25.4	10		
	double kink small pitch	20.0	8		

Note

1. Recommended minimum value.

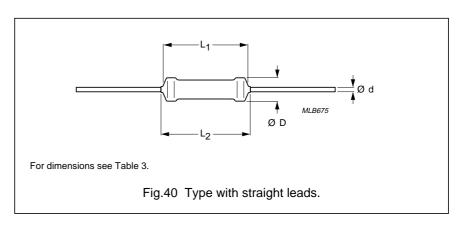


Table 3 Straight lead type and relevant physical dimensions: see Fig 40

TYPE	ØD MAX. (mm)	L ₁ MAX. (mm)	L ₂ MAX. (mm)	Ød (mm)
PR01	2.5	6.5	8.5	0.6 ±0.03
PR02	3.9	10	12	0.8 ±0.03
1 102	3.9	10	12	0.6 ± 0.03
PR03	5.2	16.7	19.5	0.8 ±0.03
FRUS	3.2	10.7	19.5	0.6 ±0.03

Power metal film resistors

PR01/02/03

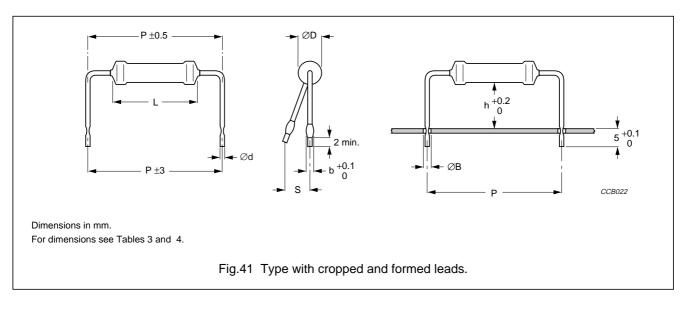


Table 4 Cropped and formed lead type and relevant physical dimensions; see Fig 41

TYPE	LEAD STYLE	Ød (mm)	b (mm)	h (mm)	P (mm)	S MAX. (mm)	ØB MAX. (mm)
PR01		0.6 ±0.03	1.1	8	17.8	2	1.0
		0.8 ±0.03	1.3	8		2	1.2
PR02		0.8 ±0.03	1.3	15	17.8	3	1.2
	cropped and formed	0.6 ±0.03	1.1	8		2	1.0
		0.8 ±0.03	1.3	8		2	1.2
PR03		0.8 ±0.03	1.3	15	25.4	3	1.2
		0.6 ±0.03	1.1	8		2	1.0

Power metal film resistors

PR01/02/03

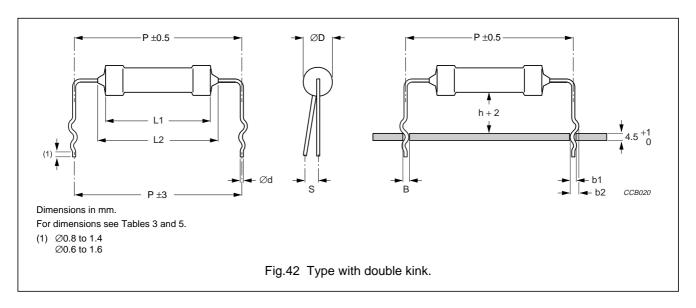


Table 5 Double kink lead type and relevant physical dimensions; see Fig 42

TYPE	LEAD STYLE	Ød (mm)	b1 (mm)	b2 (mm)	h (mm)	P (mm)	S MAX. (mm)	ØB MAX. (mm)
PR01	double kink large pitch	0.6 ±0.03	1.10 +0.25/ -0.20	1.45 +0.25/ -0.20	8	17.8	2	1.0
FRUI	double kink small pitch	0.6 ±0.03	1.10 +0.25/ -0.20	1.45 +0.25/ -0.20	8	12.5	2	1.0
PR02	double kink large pitch	0.6 ±0.03	1.10 +0.25/ -0.20	1.45 +0.25/ -0.20	8	17.8	2	1.0
PRUZ	double kink small pitch	0.8 ±0.03	1.30 +0.25 -0.20	1.65 +0.25/ -0.20	8	15.0	2	1.2
PR03	double kink large pitch	0.6 ±0.03	1.10 +0.25/ -0.20	1.45 +0.25/ -0.20	8	25.4	2	1.0
FIXUS	double kink small pitch	0.8 ±0.03	1.30 +0.25/ -0.20	2.15 +0.25/ -0.20	8	20.0	2	1.2

Power metal film resistors

PR01/02/03

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 68-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 6 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 115-1 and 68"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 6 Test procedures and requirements

IEC 115-1 CLAUSE	IEC 68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Tests in a	ccordance	with the schedule o	f IEC publication 115-1	
4.4.1		visual examination		no holes; clean surface; no damage
4.4.2		dimensions (outline)	gauge (mm)	see Tables 3, 4 and 5
4.5		resistance	applied voltage (+0/-10%): $R < 10 \ \Omega: \ 0.1 \ V$ $10 \ \Omega \le R < 100 \ \Omega: \ 0.3 \ V$ $100 \ \Omega \le R < 1 \ k\Omega: \ 1 \ V$ $1 \ k\Omega \le R < 10 \ k\Omega: \ 3 \ V$ $10 \ k\Omega \le R < 100 \ k\Omega: \ 10 \ V$ $100 \ k\Omega \le R < 1 \ M\Omega: \ 25 \ V$ $R = 1 \ M\Omega: \ 50 \ V$	R – R _{nom} : max. ±5%
4.18	Tb	resistance to soldering heat	thermal shock: 3 s; 350 °C; 6 mm from body	Δ R/R max.: ±1% +0.05 Ω
4.29	45 (Xa)	component solvent resistance	isopropyl alcohol or H ₂ O followed by brushing in accordance with "MIL 202 F"	no visual damage
4.17	Та	solderability	2 s; 235 °C	good tinning; no damage
4.7		voltage proof on insulation	maximum voltage 500 V (RMS) during 1 minute; metal block method	no breakdown or flashover
4.16	U	robustness of terminations:		
4.16.2	Ua	tensile all samples	Ø0.8 mm; load 5 N; 10 s Ø0.6 mm; load 10 N; 10 s	number of failures $<1 \times 10^{-6}$
4.16.3	Ub	bending half number of samples	\varnothing 0.8 mm; load 2.5 N; $4 \times 90^{\circ}$ \varnothing 0.6 mm; load 5 N; $4 \times 90^{\circ}$	number of failures <1 × 10 ⁻⁶

Power metal film resistors

PR01/02/03

IEC 115-1 CLAUSE	IEC 68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.16.4	Uc	torsion other half	3 × 360° in opposite directions	no damage
		of samples		Δ R/R max.: ±0.5% +0.05 Ω
4.20	Eb	bump	3×1500 bumps in three directions;	no damage
			40 g	Δ R/R max.: ±0.5% +0.05 Ω
4.22	Fc	vibration	frequency 10 to 500 Hz;	no damage
			displacement 1.5 mm or acceleration 10 g; three directions; total 6 hours (3 × 2 hours)	Δ R/R max.: $\pm 0.5\%$ +0.05 Ω
4.19	14 (Na)	rapid change of	30 minutes at LCT and	no visual damage
		temperature	30 minutes at UCT; 5 cycles	PR01 : ΔR/R max.: ±1% +0.05 Ω
				PR02 : ΔR/R max.: ±1% +0.05 Ω
				PR03 : ΔR/R max.: ±2% +0.05 Ω
4.23		climatic sequence:		
4.23.3	30 (D)	damp heat (accelerated) 1st cycle		
4.23.6	30 (D)	damp heat	6 days; 55 °C; 95 to 98% RH	R_{ins} min.: 10^3 $M\Omega$
		(accelerated) remaining cycles		Δ R/R max.: ±3% +0.1 Ω
4.24.2	3 (Ca)	damp heat	56 days; 40 °C; 90 to 95% RH; loaded	R_{ins} min.: 1000 $MΩ$
		(steady state) (IEC)	with 0.01 P _n (IEC steps: 4 to 100 V)	ΔR/R max.: ±3% +0.1 Ω
4.25.1		endurance (at 70 °C)	1000 hours; loaded with P _n or V _{max} ; 1.5 hours on and 0.5 hours off	Δ R/R max.: ±5% +0.1 Ω
4.8.4.2		temperature coefficient	at 20/LCT/20 °C and 20/UCT/20 °C (TC × 10 ⁻⁶ /K)	≤±250
Other tes	ts in accord	dance with IEC 115 o	clauses and IEC 68 test method	
4.17	20 (Tb)	solderability (after ageing)	8 hours steam or 16 hours 155 °C; leads immersed 6 mm for 2 \pm 0.5 s in a solder bath at 235 \pm 5 °C	good tinning (≥95% covered); no damage
4.6.1.1		insulation resistance	maximum voltage (DC) after 1 minute; metal block method	R_{ins} min.: 10^4 $M\Omega$
see 2nd amendme IEC115-1,		pulse load		see Figs 5, 6, 7, 8, 9 and 10